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AbstracL A novel model is proposed to describe the ionic conduction process of polymer 
electrolytes with non-hhenius temperature dependence expressed by the empirical Vogel- 
T a m m F u l c h e r  6") equation, exp[Q/(T- TO)]. Following the previous numerical simulation 
work and the series hopping calculation scheme, a microscopic model was constructed assuming 
random hopping energy distribution. Using the Arrhenius form for thermal activation and order 
statistics. the overall resistivity was found to be related to the sum of exp(E/kT+cE'P- EID) 
where E is the hopping energy barrier, exp(-cE'12) the wm term, and D, an energy-related 
constanl. Calculated from the steepest descent method, the model is able to reproduce the vm 
type of temperature dependence analytically. 

1. Introduction 

The study of the ionic conduction mechanism for ionic conducting polymers has long 
been a challenge due to the practical demand for polymer electrolytes for use in compact, 
high-eficiency batteries and fuel cells. Still, a satisfactory microscopic model is lacking 
[ l ]  to describe the formation of, and transport properties within, polymer electrolytes. 
Traditional lattice hopping theory involving exponential temperature dependence (the 
Arrhenius equation) fails because of the fact that the conducting process in these polymer 
electrolytes is largely promoted by the host polymer chain movement, which has been 
confirmed by experiments to show that ions are much less diffusive below Ts of the host 
polymers [2]. The temperature dependence of their resistivity is usually non-Arrhenius, 
with a concave curvature on the logarithmic plot against the reciprocal temperature. On 
the other hand, excellent fitting can be obtained by employing the Vogel-Tamman-Fulcher 
(VTF) semi-empirical equation 131 exp[-Q/(T - To)] (or the closely related WLF equation) 
[41, for typical experimental results such as those of polyethylene oxide (PEO)-based polymer 
electrolytes [1,2]. However, the theoretical constructs of these equations based on the f r e e  
volume and/or configuration entropy models are not of the microscopic level for polymeric 
materials and lack mechanistic details [I]. 

The only microscopic model available to describe ionic transport assisted by the polymer 
host thus far has been the dynamic bond percolation theory (DBPT) [5], which simulates the 
continuous diffusion of ions by introducing 'renewal of the random bond configuration' on a 
statically disordered lattice where the charge carriers diffuse to simulate the chain segment 
motion of the host polymer. The DBPT does not, however, lead to the non-Arrhenius 
temperature dependence for the resulting conductivities, simply because it does not account 
for the temperature during the hopping of the charge carriers [5]. Although it appears to 
be possible to fit, within a small temperature range, a few data points from experiments 
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by DBPT using two Arrhenius hopping parameters, such a procedure cannot be repeated in 
general, since analytically the sum of two Arrhenius functions with two different activation 
energies would only give a double-Arrhenius curve. 

Based on our previous numerical simulation work 16.71, where convex-curved 
logarithmic conductivities were generated by introducing an activation energy distribution 
for the ionic hopping process [7], in this paper a novel microscopic model is proposed 
to recover the non-Arrhenius temperature dependence of ionic transport for conventional 
solid-state polymer electrolytes (Eo, for example). Instead of dealing with a lattice picture, 
the model is outlined under the practical framework of a bulk containing hopping barriers 
with distribution barrier energies. Using a series hopping scheme proposed elsewhere [8], 
the overall resistivity, rather than the conductivity, will be formulated and the random 
distribution of the barrier heights be manipulated using the so called ‘order statistics’. The 
result is expected not only to regenerate the convex-bent Arrhenius temperature dependence 
of the conductivities for these systems, but also to provide some clue to the general 
mechanisms involved in the amorphous materials exhibiting non-Arrhenius behaviour. 

2. The model 

Following current understanding, the dominant class of polymer electrolytes are formed 
using a neutral polar polymer complexed with a uni-univalent metal salt, and involving the 
solvation of the cations by the Lewis basic components of the polymer (oxygen, in the case 
of PEO). For practical purposes, the ion pairing in these systems is reduced to a minimum. 
In fact in certain cases such as LiCF3SO3 the cations and anions are totally dissociated 
[l]. Both cationic and anionic motions contribute to the overall ionic conduction and are 
further characterized by their transport numbers. The translational motions of cations, which 
involve breaking one bond and forming a new one to a different Lewis base, and the anions, 
which move freely into available seats in the structure, are both facilitated by the segmental 
motions of the host polymer within amorphous regions (as the crystallinity of these polymers 
can be as high as 70%). Following the convention, the ionic conduction of these systems is 
modelled as the hoppcrs jumping on a set of sites randomly distributed in space. The spatial 
distribution of the barriers between the sites is also constantly changing with time due to 
the chain movement. Obviously, the non-hhenius  behaviour of the ionic conductivity 
must originate from the fact that (he hopping barriers within these amorphous regions are 
not associated with a unique energy value, but related to the random distribution of the 
activation energy E .  

Moreover, due to the construction of the ionic complex, only one ion can usually be 
accommodated by each site. Some jumps may be forbidden due to the possible involvement 
of occupied ionic sites. Since ions’& much larger than electrons, the mobility of the 
charge carriers is much lower than those of electronic conductors. As a result, very high 
carrier density is expected (in fact, in some cases nearly all cation sites are occupied since 
each cation must be coordinated by four oxygens) [Z]. This implies a high likelihood of 
encountering forbidden jumps. To find a connected hopping route, the concept of ‘holes’, 
namely, empty sites, must be introduced. The motion of these ‘holes’ in the opposite 
direction to the ions will not be interrupted by the occupied sites, but only occasionally 
terminated by a group of empty sites. As a major consequence, the overall travel time 
of each ‘hole’ through the bulk is computed by summing the hopping time, r .  of each 
step along the route. Following the homogeneity of the material, the overall resistance is, 
therefore, proportional to the sum of rs along an averaged or a typical path. Assuming 



A novel model for the ionic conducting polymers 5835 

an Arrhenius form for thermal activation, the probability of finding a ‘hole’ is related to 
the temperature via exp(-E/kT), where the activation energy is chosen to be roughly the 
hopping barrier height. Since E (z 0.1 eV) is usually much higher than the thermal energy, 
kT (< 0.05 eV for T < 600 K), the corresponding ion ‘mobility’ may be approximated 
by the WKB result [9], exp(-c[E - KIT/’), where c is a constant related to the ion mass, 
the K the kinetic energy of the jumpers, which is omitted in the following calculation. For 
amorphous PEO, the separation distance between the sites can be regarded as a constant since 
ion sites are almost uniformly distributed by the oxygen atoms on the backbone (-CHz- 
CHza-)  between every two carbon atoms. Therefore, the overall hopping rate between 
any pair of sites, ? - I ,  becomes the product of the mobility and the probability of finding a 
‘hole’, namely, exp(-cE’IZ - E / k T ) .  

The above summation of r would produce an Arrhenius temperature dependence 
for crystalline hosts where only a single value of E is encountered. For amorphous 
polymers, however, a weight function should be included to take into account the probability 
distribution of having a jump with energy E. This distribution function is in general related 
to the structural information of the host material, such as the geometry and separation 
between the ion sites. In order to accommodate a wide range of amorphous systems, only 
completely random distribution of the barrier energy is assumed here, i.e., the probability 
density function f(E) is a constant for E between EO (E-minimum) and E,  (E-maximum) 
beyond which f becomes negligible. Since there is usually more than one choice of site for 
the hopper to jump into, following the minimum energy principle the jumping probability 
is maximized at the sites having the lowest value of E .  As a consequence, the probability 
distribution of having a jump with the chosen energy E has to obey the so-called ‘order 
statistics’ and the resulting distribution function, P(E), is given by n(1 - F ( E ) ) ” f ( E ) ,  
where F ( E )  is the cumulative probability distribution of f(E) and n is the number of 
choices at each jump. For constant f ( E ) ,  F ( E )  is simply ( E  - &)/(E,  - Eo), a linear 
function of E. Ideally, both n and E should be very large, because in the vicinity of an 
ion site within the amorphous host, the average number of choices n can be much larger 
than 12, the close-packing number, due to the fact that the microscopic configuration of the 
host is changing with time and there is no clear distinction between the nearest, second- 
nearest and thud-nearest neighbours. To obtain the temperature dependence, however, only 
the ratio of the maximum barrier E, and n is needed. Representing ( E ,  - Eo)/” by D 
and ( E  - &)/D by x (ranging from 0 to n),  P(E) can be written as (1 - x / n ) “ / D .  Note 
(1 -x/n)” can be approximated by exp(-x) for n >> 1. Even n = 12 was found to be large 
enough to support this approximation for small x, and either expression becomes negligible 
when x is large. Therefore, for the amorphous system possessing a constant activation 
energy distribution with minimum energy selection for hopping, P(E) is approximated by 
exp[-E - Eo) /D] /D .  

Since the total travel time for each ion can be computed by summing the r ( E )  along its 
path, and the distribution of hopping with E ,  P(E), is expected to be the same throughout 
the volume of a homogeneous bulk, the overall resistivity is, therefore, proportional to the 
sum of P ( E ) T ( E )  over E ;  

R ( @ )  = constant x exp[@E + cE’/’ - E/D] (1) 
E 

where j3 = l / k T .  Due to the presence of the non-linear exponent (to be called f(j3, E )  
hereafter) the sum cannot be calculated analytically. However, a more intuitive approach 
can be taken to approximate the sum of exponential functions by the envelope profile of 
the exponent family on a logarithmic plot, as shown in figure I .  The two results differ by 
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a slow temperature-dependent factor, which is overwhelmed by the exponential part. The 
envelope f U, E@))  is obtained by finding E(@), the particular E values when f(B,  E) is 
maximized, through a f / a E  = 0. Since f(p, E )  = @ E  + c E 1 / *  - E J D ,  i3fJaE = 0 gives 

E(@) = 0.25cz(D-' - @)-' (2)  

which leads to the envelope curve f(p) = 0.75c2(D-' - @)-I .  Representing 0.75c2D2/k 
as Q and D / k  as TO, we recover the V F  expression (plus a temperature-independent term): 
(Q/To)TJV - 7 8 ,  or Q / ( T  - To) - Q/To. 

Fwre L The non-Arrhenius resistivity of PEO-SCN fined by the proposed model; the Arrhenius 
l i e  family of four values of E are given by the lines in the ascending order of dash spacing 
with E = 0.268,0.415,0.637 md 1.07 eV: the sum ofthe four Arrhenius lines is shown by the 
solid curve with concave curvature; the experimental data are rep~c~enled by *. 

3. Discussion 

To illustrate the model proposed, the numerical example of PEO-SCN 121 has been provided 
in figure 1, where only four E values for equation (1) (0.268, 0.415, 0.637 and 1.07 eV) 
were used to simplify the calculation. Physically, it shows that at high temperatures the 
overall resistance is mainly contributed by the hops with small E, while the ionic transport is 
gradually blocked by larger energy barriers when the system is cooled down. The slopes ( E  
values) and the intercepts (Y(E)) of these Arrhenius lines were obtained by the fitting on the 
expcrimental data plotted against p .  Y(E) is given by cE1IZ - EJD, and the constants c and 
D (hence Q and TO) are obtained by data fitting. The resulting kQ and TO were 0.071 eV and 
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260 K, respectively. In the meantime, c can be found from (kQ/0.75)'/*/0 = 14 (eV)-'/2. 
This value is compared to the WKB result, which is given by (2M)' /2d/(h/2n) ,  where M is 
the mass of the particle, d the jumping distance and h the Planck constant. Note that M n. 
several proton masses and d n. 0.1 nm, with the resulting c (WKB) around 17-30 (eV)-'I2, 
in the same order of magnitude. The discrepancy between this c (wm) and c found from 
the fitting can be further traced back to our expression of mobility, exp(-cE'/'), which is 
approximated from the WKB result: exp(-c(WKB)[E - K]'/'). Since K, the kinetic energy, 
is always positive, c has to be smaller than c (WKB) to make the balance. Since D is given 
by (Em- Eo)/n, the cut-off temperature, TO, is thus controlled by ratio of the highest energy 
barrier and the number of neighbouring sites approachable, whereas E ,  and n cannot be 
identified individually. Obviously our model is not limited to the polymer electrolytes under 
consideration, since the derivation does not involve any detailed information on the host 
chain configuration, etc. Therefore, the analysis can be applied to a wide variety of hopping 
systems with fully random energy distribution. 

Moreover, our scheme is not limited to describing the vv-type conductors. In fact the 
functional form of the probability for finding a barrier having E ,  P ( E ) ,  can be modified 
to apply to other systems, Conversely, the deviation of the experimental data from the VTF 
equation can be employed to study the changes in functional forms of P(E) leading to 
the structural information. However, no matter what modifications are made, the resulting 
envelope will always show a concave curvature on the logarithmic resistivity plot as long 
as each site accommodates only one ion at a time, so the overall resistivity is characterized 
by the sum of jumps in series. When a different microscopic mechanism is involved, the 
convex curvature may appear, as was shown in the case of granular metals [lo]. 
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